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AUTOMATIC ANALYSIS OF RAMAN SPECTRA

I.A. Stavié, S. Sasi¢

Department of Physical Chemistry, University of Belgrade
P.0.BOX 137 Belgrade Yugoslavia

Abstract. In this paper the automatic analysis of Raman spectra is described. The method applied is so-called
SRIP, i.e. "Standard Representation Independent Parameter” fitting, which has been given previosly and proven to
be steadily converging, if the model has been chosen properly.The approach is extended here by introducing the
interactive continuation of the analysis: some of peaks may be rejected or left in the model with fixed up parameters
of the position and full width at half maximum .

The main improvements of the algorithm is to be applied to the Raman spectra analysis include the mixed
mathematical model as well as the enhanced sensitivity in discovering of peaks. That is achieved by the analysis of
smoothed residuals at the steps of the peak revelation.

This approach enables successful analysis of spectra with low signal to noise ratio, without limitation in
oumber of the peaks.The reliability of Raman band analysis was proven using overlapped spectra of solution of
noninteracting liquids: carbontetrachloride (CTC), dichloromethane (DCM) and 1,2 dichloroethane (DCE) with
different molar ratio.Solution spectra can be calculated from component spectra and compared with analysis by

described method.

Introduction

Recently (1), the SRIP-method (Independent Pa r in Standard Representation) has been applied
successfully to the automatic analysis of soft X-ray emission spectra. The rigorous mathematical theory, developed
by Slavic and Slavic (2), given for linear and nonlinear case, has been given in Appendix A and Appendix B

respectively; the uncorrected print errata in those parts forced us to repeat the Appendices in the present paper.
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784 SLAVIC AND SASIC
Let us present an original spectrum data by the set
(V.W) € R%, i € N[0,m], (1)
where M = m + 1 is the number of data pairs for which we seek a model in original space; The model is given

by sum of the J (Gaussian+ Lorentzian-type) -band functions and polynomial of the third degree, describing the

background, hence

J
W(vy = L{ G; + Lj) + Py(V) t E, )
=1
where
G; = byexp{ -In2{2(V;- by)/by 1}, 21
L = byo/{ 1 +1n2[2(V;- by)ibg. P} 2"

Note that the by, parameter for the j-th peak means really full width at half maximum (FWHM) only if the band

will be done by pure Gaussian.
General Procedure

The procedure starts by the transformation of data described in detailsin Appendix A and dealing onwards
with the (x;,y;) set of data in SR? space.

The maximum value of the spectrum in SR? space is given value | and represents the height of the greatest
available peak. The fourth power of this spectrum gives a chart where the main peak is separated with the FWHM
nearly equal to a half of the original peak - the other peak heights become suppressed (3,4). The analysis of this
chart yields the parameters of the "first”, 1.e. the greatest peak. Multiplying the obtained FWHM by two we get
the peak in the starting set, therefrom we strip the peak, smooth the residuals and continue the search for the next
peak, and so on.The more peaks added to the model, the next observed peak is smaller until the desired sensitivity
of the "peak discovering” is reached.

The mathematical model in SR? space is given by

J
Yix) = E{G; + L} + Px) £ €;, A3)
j=1
where

G/ = agexp{ -{(x- adj)/adj»llz}) 39

and Lj = 34;-2/( L+ [(x- aAj)/aAj-I]Z)' 3"
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Notice that the model is simple, i.e. without constants in order to avoid redundant multiplicationsduring the terative
fitting procedure by the algorithm described in Appendix B.

The transformation (AS) returns the parameters into R* as
(1) Gaussian height bgy = 53 Woa - Weid,
(2) Lorentzian height by = ag; (Wow - Wo),
(3) FWHM Bt = 41 (Ve = Viia)*1.66524,
(4) position by =25 (Voo Vo) + Vi o
where j = 1, 2, ..., ] is the current peak index for the total number of J peaks. Thus we calculate
(5) Area; = { 1.0645% by, + 1.8867%b,, } * b,
Results and Discussion

The purpose of this paper was mainly to prove reliability of the method proposed. Therefore we used
different mixtures of the carbontetracloride (CTC), dicloromethane (DCM) and 1,2 dicloroethane (DCE), with the
known band characteristics (5) in the range of 250 - 380cm™ (284.7 cm for DCM, 300.9 cm for DCE, and 313.7
cm for CTC).The similarity of the physical and chemical properties of these substances results in their very weak
mutual interaction. In order to study the program response in the cases of low signal to noise ratio, we made the
same spectra with the small laser power as well as with more narrow slit.

Raman spectra has been obtained at room temperature with SPEX 1401 spectrometer by excitation line 514.5
nm of an Ar” ion laser Spectra Physics model 2020. The power of incident beam were 200 mW (slit width 300 pm)

and 40 mW (slit width 100 um) for the first and the second series of spectra respectively.
Figures 1 and 2 show some iilustrative spectra obtained by the different ratio of the components. Tables

1 and 11 show their parameters in comparison to the pure supstances respectively.

We would like to emphasize that, for the fig. 1, discrepancies in the position parameter reach not more than
1 em” and differences in the FWHM not more than 1.8 cm’ regardless of the quality of the spectra or the
component ratio. The results are something poorer in a cases where smaller peaks have about ten times lower

intensity than most intensive peak in spectra. Such example is shown on fig. 2.

Conclusion

Extensive number of known Raman spectra analysis has shown that the method proposed can be applied

with a high reliability for studying complex bands, where the lower peaks have the heights even less than 10 % of
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Figure 1. Spectra of solution in 240 - 380 cm” region. The digits in upper right corner indicate
DCM:DCE:CTC volume ratio: a) spectra recorded by incident power 200 mW and slit width 300 um, b) spectra
recorded by 40 mW and 100 ym, ® - experimental curve, ® - CTC, v - DCE, a - DCM.
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Figure 2. The spectraof solution DCM: DCE:CTC with vojume ratio 1:10:1 between 270 - 340 cm.

The labels are same like in previous figure.

Table [: Parameters of peaks recorded by incident power 40 mW and slit width 100 gm.

DCM:DCE:CTC max. pure sup. FWHM | pure sup.
DCM 284.4 284.940.2 8.3 8.240.5

1:1:1 DCE 301.2 300.9+0.4 7.8 7.5+0.3
CTC 314.6 313.740.6 9.5 10.74£0.7

DCM 284.6 284.910.2 8.7 8.210.5

4:1:4 DCE 301.9 300.910.4 8.1 15103
CTC 314.2 313.74£0.6 9.2 10.7+0.7

DCM 286.1 284.910.2 3.2 8.21+0.5

1:10:1 DCE 301.2 300.91+0.4 6.9 7.540.3
CTC 314.4 313.7+0.6 8.51 10.740.7
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Table II: Parameters of peaks recorded by incident power 200 mW and slit widht 300 pum

DCM:DCE:CTC max. pure sup. FWHM pure sup.
DCM 284.4 .| 284.0+0.2 9.61 9.8+0.5
| | DCE 301.5 300.9+0.4 10.8 9.840.5
CTC 314.3 313.71£0.6 11.2 12.7£0.2
DCM 284.7 284.9+0.2 8.0 9.8+0.5
414 DCE 301.2 300.9+0.4 8.7 9.8+0.5
CTC 314.6 313.7+0.6 12.8 12.740.2

the greatest peak. Program has been written in C language enabling comfortable interactive analysis with graphics
and spending an CPU time of about 0.5 min/peak on PC 386 (25 MHz).It provides successful analysis up to 10
peaks what can be extended if needed.

APPENDIX A

Polynomial Approximation in Standard Representation (PASR)

If we have a discrete data set
(V,\W,) € R*, i € N[0O,m], (A1)
for which we would like to find out the functional relation
W) = F(V), (A2)
we can obtain a new data set, i.e.

(x,y) € SR? = R![0,1],i € NI[O,m] (A3)

given by the following simple transformation:

V-V
X = , Voo = min {V}, V.. = max {V}, (Ada)
Veuw Voo i i
and
W W
Y, =—————, W_. = min (W}, W_, = max {W}. (Adb)
W W i i
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Notice here that
0sx<1 0y <1, O0<gism (Adc)
The new data set (x,,y,) is said to be the standard representation  (SR) of the starting data set

(Vi,W); the transformation returning SR chart to the starting field of values is given by

Vi = Vit Vowr VX (ASa)

Wi = Wont (Wour Wy, (ASb)

The SR has some valuable properties that enable easy solving ofboth interpolating or fitting (smoothing
approximation) problems. This is done by parameters disclosing of a linear or nonlinear functional form,
which approximates successfully the given SR data, i.e.

y = fx), (A2")
Hence, the searched function F,eq.(A2), will be known, implicitly by (A2’) , or explicitly expressed by simple

returning transformations (AS).

IPF Polynomial Approximation in SR

The polynomial approximation appears to be the most simple one in further application. Therefore we consider
the case when the SR (A3) can be mathematically ideatified by the n-th degree polynomial, i.e.
n
yi(x) = P(x) s Lax/, O0=i<m (A6)
j=0

In SR the natural constraints appear as follows:

P(x,=0) = 2, = y,, (A7)
P(x.=1) = a, + a, + ..a, + =y, (A8)
and
I
I =f P(x)dx = a, + ,/2 + ...a/(a+1). (A9)
0
If
M=m+1 (A10)

is the total number of available data points and Ax = 1/M, thea

I-iim [Ey/M ] = lim [y] (A9")

M- x M- o
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The total number of polynomial parameters is given by

N=n+1 (All)

Lemma 1. If the SR set (A3) is represented by the polynomial (A6),and if it can be found the best

agreement of the constraint { A8) , i.e. if it can be found the polynomial degree n for which
ag+a, +... 44, - Y| = min, (A8")

then, this n is said to be the optimum degree (n,,)-

P r 0 0 f. No matter how parameters of the polynomial (A6) have been found, the parameters make a sequence
g™ +a, "+ +a™ -y, = 8(n);
therefore it can be determined
(Do) = min|8(n)].
Let us consider the following obviously chain of inequalities:
L(@Y/3a)* < L@AY/3a)(AY/Aa) < (AY/Aa), (A12)
where, in our case
Y, = P(x), AY, = ¢ =y, - P(x), (A13)

From (A12) we derive the Independent Parameter Estimator (IPE) for the (k+ 1)-st iterative step of the j-th

parameter optimization

Aaj‘“": D, L xe¥, (Al4)
i

Here the “weighting value” is given by

D, =1/Ex? (A15)
i
and should not be computed by (A15) at cach step, except the very first one.

Theorem 1. The simple iterative IPF method, for the SR polynomial, given by
= a® + A, 0 <j<n, (A16)

with the IPE (A14) and (A15),is steady converging.
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Proof. Sufficiency.We shall prove the sufficient condition: [IPE| < 1 .Let us consider (A12) as

Lx3 < (1/Aa) Exie < (l/Aa) Lel (A127)
Let it be
lel/| | = 1y < 1, r= max{r}, (A17)
i,j
Hence
Lx¥< rLxf= b (A12)

It follows from (A4c) that:
Lx?< IxM < ... < Ex?< Ex<Ef=M (A4d)

for the nontrivial case M > 1. This can be fulfilled only for r = 1 and therefore
|4 < Jef. (A17")

Taking into account condition || < y; as well as (A4c), the final conclusion is that
[IPE| a [Ag]| <1 (A17)
Necessity. Letitbe r < 1, say r = 1/M ; by (A12"") it follows that
Lx3 < (IIM) L x) < (IM), ie. ExF < (I/M),
what is in contradiction with the chain inequalities (A4d). W
APPENDIX B
Nonlinear Approximation in Standard Representation
A mathematical model F(x) approximating a set of data (x,,y,) satisfies the relation
Yi=yx) = Fo) + ¢ (B1)

where ¢ are some errors appearing due to any possible reason. The model F(x) can be accepted ganerally as a

good approximation under the following condition

el <<y (B2a)
e.g.
| €| < €rtonns {B2b)

or
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q(n) = L ¢X(n) ~ min. (B2¢)

The number of data pairs M is given by (A10) and number of model parameters N by (A11); then one can define

the model approximation generally as
(A) analytical form if:

¢ = 0, 0<i<m and N <M, (B3)
(1) interpolating form if:
e =0, 0si<m and N=M, (B4)
(F) fitting form if:

e +0, and N <M, (BS)
and

(O) over-rank parameter form if:
e, +0, and N =M. (B6)

One can yield the over-rank polynomial parameters only by the soalled Independent Parameter Fitting (IPF)
iterative optimization method. The IPF method appears also especially useful in SR, where it is steadyly converging;

the property has been proved in Appendix A for the linear model fitting in SR.
SR and Nonlinear Model Approximation

Even if a model for exact solution exists, and is denoted under “analytical form® (B3), this rarely could be
found in practice, mainly because of the statistical fluctuations of the data. The functional connection between
experimental data variables is almost given by a fitted form of a model which may combine linear and nonlinear
part (1).

Depending on the aim, it can be convenieat to search either linear or nonlinear model approximation;e.g. pure
linear model is convenient for the differentiating and integrating purposes (2); the nonlinear model can extract
important investigating constituents (e.g. the Gaussian peaks in X-ray, y-ray, optical end others spectra analysis (3))
or it can be more efficient in the smoothing - with a smaller number of parameters - than a linear model.

Let it be, in SR, the general mathematical model (including linear and nonlinear part) given by

Y; = f(x;b,,....by), B7)
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where N unknown parameters have to be estimated. Let they be ordered by their significance (this means that the
same relative change of the b, parameter produces more model dislocation than the corresponding change of b,
parameter, etc.).

We write Taylor series expansion for the model value in the vicinity of the experimental i-point (y;) at (k + 1)-st

step of the iterative procedure as

¥, = YO +[0Y,2/0b,)Ab 0+ | +[8Y,2/8by)Ab K V1. (BY)

This linearization brings, in matrix notation, the following system of equations
U®ABY Y = E®, (B9)

and, after normalization (without weighting matrix)

HOABE™) = UWE®, (B10)

where ~

HE = Yoy (B11)

where AB = {Ab} is the N-dimensionat parameter increment vector to be tound,

1l

U= {u =09Y/3b}G=01,..mj=12..N)

denotes the (M,N) matrix of the partial N-parameter derivatives for M points;

U indicates the transposed matrix and
E={¢ =y -Y,} is the M-dimensional error vector.

Further, the fitting is usually realized by the modified (damped) Gauss-Newton method (MGN),4s the solution
of eq.(B10),i.e.

ABYHY = pW[HOTIYWES (B12)

where p is an arbitrary constant influencing the speed and convergency of the iterative process; this constant is given

in (1) as

1, if converging,
p = (B13)
0.5p®V,if diverging.
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Note that the MGN algorithm derived here has the simpler form (omitting the weighting diagonal matrix D (1));
the altemative solution may be used too, if the procedure speed is not important.

We assume the following:

(a) mathematical model chosen suits to the general data pattem;

(b) initial parameter vector B is sufficiently good, and

(c) the model parameters are ordered by their significance.

Under these assumptions the convergency is guaranteed (p = 1) and the solution can be found by the IPF

method; therefore, we calculate the parameter increments simply by

Ab& ={T(@Y IBb)(E P/y)} / (E@YP/8b) v},

j=1,.,N. (B14)

Note that the algorithm (B14) is the alternative one, i.e. it is given with the 1/y; data point weights.
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